Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
New Phytol ; 240(5): 1990-2006, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37735952

RESUMO

Phase separation has emerged as a fundamental principle for organizing viral and cellular membraneless organelles. Although these subcellular compartments have been recognized for decades, their biogenesis and mechanisms of regulation are poorly understood. Here, we investigate the formation of membraneless inclusion bodies (IBs) induced during the infection of a plant rhabdovirus, tomato yellow mottle-associated virus (TYMaV). We generated recombinant TYMaV encoding a fluorescently labeled IB constituent protein and employed live-cell imaging to characterize the intracellular dynamics and maturation of viral IBs in infected Nicotiana benthamiana cells. We show that TYMaV IBs are phase-separated biomolecular condensates and that viral nucleoprotein and phosphoprotein are minimally required for IB formation in vivo and in vitro. TYMaV IBs move along the microfilaments, likely through the anchoring of viral phosphoprotein to myosin XIs. Furthermore, pharmacological disruption of microfilaments or inhibition of myosin XI functions suppresses IB motility, resulting in arrested IB growth and inefficient virus replication. Our study establishes phase separation as a process driving the formation of liquid viral factories and emphasizes the role of the cytoskeletal system in regulating the dynamics of condensate maturation.


Assuntos
Actomiosina , Rhabdoviridae , Actomiosina/metabolismo , Corpos de Inclusão Viral/metabolismo , Citoesqueleto de Actina/metabolismo , Replicação Viral , Fosfoproteínas/metabolismo , Miosinas/metabolismo
2.
J Virol ; 97(5): e0003023, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37092993

RESUMO

Human metapneumovirus (HMPV) is a negative-strand RNA virus that frequently causes respiratory tract infections in infants, the elderly, and the immunocompromised. A hallmark of HMPV infection is the formation of membraneless, liquid-like replication and transcription centers in the cytosol termed inclusion bodies (IBs). The HMPV phosphoprotein (P) and nucleoprotein (N) are the minimal viral proteins necessary to form IB-like structures, and both proteins are required for the viral polymerase to synthesize RNA during infection. HMPV P is a homotetramer with regions of intrinsic disorder and has several known and predicted phosphorylation sites of unknown function. In this study, we found that the P C-terminal intrinsically disordered domain (CTD) must be present to facilitate IB formation with HMPV N, while either the N-terminal intrinsically disordered domain or the central oligomerization domain was dispensable. Alanine substitution at a single tyrosine residue within the CTD abrogated IB formation and reduced coimmunoprecipitation with HMPV N. Mutations to C-terminal phosphorylation sites revealed a potential role for phosphorylation in regulating RNA synthesis and P binding partners within IBs. Phosphorylation mutations which reduced RNA synthesis in a reporter assay produced comparable results in a recombinant viral rescue system, measured as an inability to produce infectious viral particles with genomes containing these single P mutations. This work highlights the critical role HMPV P plays in facilitating a key step of the viral life cycle and reveals the potential role for phosphorylation in regulating the function of this significant viral protein. IMPORTANCE Human metapneumovirus (HMPV) infects global populations, with severe respiratory tract infections occurring in infants, the elderly, and the immunocompromised. There are currently no FDA-approved therapeutics available to prevent or treat HMPV infection. Therefore, understanding how HMPV replicates is vital for the identification of novel targets for therapeutic development. During HMPV infection, viral RNA synthesis proteins localize to membraneless structures called inclusion bodies (IBs), which are sites of genome replication and transcription. The HMPV phosphoprotein (P) is necessary for IBs to form and for the virus to synthesize RNA, but it is not known how this protein contributes to IB formation or if it is capable of regulating viral replication. We show that the C-terminal domain of P is the location of a molecular interaction driving IB formation and contains potential phosphorylation sites where amino acid charge regulates the function of the viral polymerase complex.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Idoso , Humanos , Linhagem Celular , Metapneumovirus/fisiologia , Nucleotidiltransferases , Infecções por Paramyxoviridae/virologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Infecções Respiratórias , RNA , Proteínas Virais/genética , Proteínas Virais/metabolismo , Compartimentos de Replicação Viral/metabolismo , Replicação Viral , Corpos de Inclusão Viral/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047525

RESUMO

Many mononegaviruses form inclusion bodies (IBs) in infected cells. However, little is known about nuclear IBs formed by mononegaviruses, since only a few lineages of animal-derived mononegaviruses replicate in the nucleus. In this study, we characterized the IBs formed by Nyamanini virus (NYMV), a unique tick-borne mononegavirus undergoing replication in the nucleus. We discovered that NYMV forms IBs, consisting of condensates and puncta of various sizes and morphologies, in the host nucleus. Likewise, we found that the expressions of NYMV nucleoprotein (N) and phosphoprotein (P) alone induce the formation of condensates and puncta in the nucleus, respectively, even though their morphologies are somewhat different from the IBs observed in the actual NYMV-infected cells. In addition, IB-like structures can be reconstructed by co-expressions of NYMV N and P, and localization analyses using a series of truncated mutants of P revealed that the C-terminal 27 amino acid residues of P are important for recruiting P to the condensates formed by N. Furthermore, we found that nuclear speckles, cellular biomolecular condensates, are reorganized and recruited to the IB-like structures formed by the co-expressions of N and P, as well as IBs formed in NYMV-infected cells. These features are unique among mononegaviruses, and our study has contributed to elucidating the replication mechanisms of nuclear-replicating mononegaviruses and the virus-host interactions.


Assuntos
Corpos de Inclusão Viral , Nucleoproteínas , Animais , Condensados Biomoleculares , Corpos de Inclusão Viral/metabolismo , Mononegavirais/metabolismo , Nucleoproteínas/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
4.
J Virol ; 96(18): e0090022, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36040180

RESUMO

Many negative-sense RNA viruses, including the highly pathogenic Ebola virus (EBOV), use cytoplasmic inclusion bodies (IBs) for viral RNA synthesis. However, it remains unclear how viral mRNAs are exported from these IBs for subsequent translation. We recently demonstrated that the nuclear RNA export factor 1 (NXF1) is involved in a late step in viral protein expression, i.e., downstream of viral mRNA transcription, and proposed it to be involved in this mRNA export process. We now provide further evidence for this function by showing that NXF1 is not required for translation of viral mRNAs, thus pinpointing its function to a step between mRNA transcription and translation. We further show that RNA binding of both NXF1 and EBOV NP is necessary for export of NXF1 from IBs, supporting a model in which NP hands viral mRNA over to NXF1 for export. Mapping of NP-NXF1 interactions allowed refinement of this model, revealing two separate interaction sites, one of them directly involving the RNA binding cleft of NP, even though these interactions are RNA-independent. Immunofluorescence analyses demonstrated that individual NXF1 domains are sufficient for its recruitment into IBs, and complementation assays helped to define NXF1 domains important for its function in the EBOV life cycle. Finally, we show that NXF1 is also required for protein expression of other viruses that replicate in cytoplasmic IBs, including Lloviu and Junín virus. These data suggest a role for NXF1 in viral mRNA export from IBs for various viruses, making it a potential target for broadly active antivirals. IMPORTANCE Filoviruses such as the Ebola virus (EBOV) cause severe hemorrhagic fevers with high case fatality rates and limited treatment options. The identification of virus-host cell interactions shared among several viruses would represent promising targets for the development of broadly active antivirals. In this study, we reveal the mechanistic details of how EBOV usurps the nuclear RNA export factor 1 (NXF1) to export viral mRNAs from viral inclusion bodies (IBs). We further show that NXF1 is not only required for the EBOV life cycle but also necessary for other viruses known to replicate in cytoplasmic IBs, including the filovirus Lloviu virus and the highly pathogenic arenavirus Junín virus. This suggests NXF1 as a promising target for the development of broadly active antivirals.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Proteínas de Transporte Nucleocitoplasmático , RNA Viral , Proteínas de Ligação a RNA , Antivirais , Ebolavirus/genética , Ebolavirus/metabolismo , Humanos , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Viral/virologia , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Sci Rep ; 11(1): 21048, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702948

RESUMO

Viruses need cells for their replication and, therefore, ways to hijack cellular functions. Mitochondria play fundamental roles within the cell in metabolism, immunity and regulation of homeostasis due to which some viruses aim to alter mitochondrial functions. Herein we show that the nucleoprotein (NP) of arenaviruses enters the mitochondria of infected cells, affecting the mitochondrial morphology. Reptarenaviruses cause boid inclusion body disease (BIBD) that is characterized, especially in boas, by the formation of cytoplasmic inclusion bodies (IBs) comprising reptarenavirus NP within the infected cells. We initiated this study after observing electron-dense material reminiscent of IBs within the mitochondria of reptarenavirus infected boid cell cultures in an ultrastructural study. We employed immuno-electron microscopy to confirm that the mitochondrial inclusions indeed contain reptarenavirus NP. Mutations to a putative N-terminal mitochondrial targeting signal (MTS), identified via software predictions in both mamm- and reptarenavirus NPs, did not affect the mitochondrial localization of NP, suggesting that it occurs independently of MTS. In support of MTS-independent translocation, we did not detect cleavage of the putative MTSs of arenavirus NPs in reptilian or mammalian cells. Furthermore, in vitro translated NPs could not enter isolated mitochondria, suggesting that the translocation requires cellular factors or conditions. Our findings suggest that MTS-independent mitochondrial translocation of NP is a shared feature among arenaviruses. We speculate that by targeting the mitochondria arenaviruses aim to alter mitochondrial metabolism and homeostasis or affect the cellular defense.


Assuntos
Arenaviridae/metabolismo , Boidae/virologia , Corpos de Inclusão Viral/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Nucleoproteínas/metabolismo , Animais , Arenaviridae/classificação , Arenaviridae/genética , Chlorocebus aethiops , Corpos de Inclusão Viral/genética , Mitocôndrias/genética , Nucleoproteínas/genética , Células Vero
6.
Int J Biol Macromol ; 192: 55-63, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606793

RESUMO

Inclusion bodies (IBs) are characteristic biomolecular condensates organized by the non-segmented negative-strand RNA viruses belonging to the order Mononegavirales. Although recent studies have revealed the characteristics of IBs formed by cytoplasmic mononegaviruses, that of Borna disease virus 1 (BoDV-1), a unique mononegavirus that forms IBs in the cell nucleus and establishes persistent infection remains elusive. Here, we characterize the IBs of BoDV-1 in terms of liquid-liquid phase separation (LLPS). The BoDV-1 phosphoprotein (P) alone induces LLPS and the nucleoprotein (N) is incorporated into the P droplets in vitro. In contrast, co-expression of N and P is required for the formation of IB-like structure in cells. Furthermore, while BoDV-1 P binds to RNA, an excess amount of RNA dissolves the liquid droplets formed by N and P in vitro. Notably, the intrinsically disordered N-terminal region of BoDV-1 P is essential to drive LLPS and to bind to RNA, suggesting that both abilities could compete with one another. These features are unique among mononegaviruses, and thus this study will contribute to a deeper understanding of LLPS-driven organization and RNA-mediated regulation of biomolecular condensates.


Assuntos
Doença de Borna/metabolismo , Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Corpos de Inclusão Viral/metabolismo , Fosfoproteínas/metabolismo , Proteínas Virais/metabolismo , Animais , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/patologia , Doença de Borna/patologia , Fracionamento Celular/métodos , Células Cultivadas , Imunofluorescência , Corpos de Inclusão Viral/patologia , Extração Líquido-Líquido , Microscopia Confocal
7.
Viruses ; 13(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34452292

RESUMO

Rabies virus is a highly neurophilic negative-strand RNA virus with high lethality and remains a huge public health problem in developing countries to date. The double-stranded RNA-binding protein Staufen1 (STAU1) has multiple functions in RNA virus replication, transcription, and translation. However, its function in RABV infection and its mechanism of action are not clear. In this study, we investigated the role of host factor STAU1 in RABV infection of SH-SY-5Y cells. Immunofluorescence, TCID50 titers, confocal microscopy, quantitative real-time PCR and Western blotting were carried out to determine the molecular function and subcellular distribution of STAU1 in these cell lines. Expression of STAU1 in SH-SY-5Y cells was down-regulated by RNA interference or up-regulated by transfection of eukaryotic expression vectors. The results showed that N proficiently colocalized with STAU1 in SH-SY-5Y at 36 h post-infection, and the expression level of STAU1 was also proportional to the time of infection. Down-regulation of STAU1 expression increased the number of Negri body-like structures, enhanced viral replication, and a caused 10-fold increase in viral titers. Meanwhile, N protein and G protein mRNA levels also accumulated gradually with increasing infection time, which implied that STAU1 inhibited rabies virus infection of SH-SY-5Y cells in vitro. In conclusion, our results provide important clues for the detailed replication mechanism of rabies virus and the discovery of therapeutic targets.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a RNA/metabolismo , Vírus da Raiva/fisiologia , Replicação Viral , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Interações Hospedeiro-Patógeno , Humanos , Corpos de Inclusão Viral/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
8.
Biomed Res Int ; 2021: 1807293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409100

RESUMO

Human Parainfluenza Virus Type 3 (HPIV3) is one of the main pathogens that cause acute lower respiratory tract infections in infants and young children. However, there are currently no effective antiviral drugs and vaccines. Herein, we found that a natural compound, curcumin, inhibits HPIV3 infection and has antiviral effects on entry and replication of the virus life cycle. Immunofluorescence and western blotting experiments revealed that curcumin disrupts F-actin and inhibits viral inclusion body (IB) formation, thus inhibiting virus replication. Curcumin can also downregulate cellular PI4KB and interrupt its colocalization in viral IBs. This study verified the antiviral ability of curcumin on HPIV3 infection and preliminarily elucidated its influence on viral replication, providing a theoretical basis for antiviral drug development of HPIV3 and other parainfluenza viruses.


Assuntos
Curcumina/farmacologia , Corpos de Inclusão Viral/metabolismo , Vírus da Parainfluenza 3 Humana/fisiologia , Infecções por Respirovirus/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Células A549 , Actinas/metabolismo , Animais , Cães , Regulação para Baixo , Redução da Medicação , Células HeLa , Humanos , Corpos de Inclusão Viral/efeitos dos fármacos , Corpos de Inclusão Viral/genética , Células Madin Darby de Rim Canino , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Infecções por Respirovirus/tratamento farmacológico , Infecções por Respirovirus/genética , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
9.
Sci Rep ; 11(1): 14173, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238966

RESUMO

Elephant endotheliotropic herpesvirus haemorrhagic disease (EEHV-HD) is widely acknowledged as the most common cause of mortality in young Asian elephants (Elephas maximus) in captivity. The objective of the current study was to perform a blinded, retrospective pathology review of European EEHV-HD fatalities, constituting the largest systematic assessment of EEHV-HD pathology to date. Findings between viral genotypes were compared with the aim to investigate if disseminated intravascular coagulation (DIC) could be substantiated as a significant complicating factor, thereby increasing the understanding of disease pathophysiology. Immunohistochemical staining confirmed endothelial cell (EC) damage and the presence of EC intranuclear inclusion bodies, demonstrating a direct viral cytopathic effect. Microthrombi were observed in 63% of cases in several organs, including lungs, which, together with widespread haemorrhage and thrombocytopenia reported in EEHV-HD case reports, supports the presence of overt DIC as a serious haemostatic complication of active EEHV infection. Death was attributed to widespread vascular damage with multi-organ dysfunction, including severe acute myocardial haemorrhage and subsequent cardiac failure. Systemic inflammation observed in the absence of bacterial infection may be caused by cytokine release syndrome. Findings reinforce the necessity to investigate cytokine responses and haemostatic status during symptomatic and asymptomatic EEHV viraemia, to potentially support the use of anti-inflammatory treatment in conjunction with anti-viral therapy and cardiovascular support.


Assuntos
Coagulação Intravascular Disseminada/veterinária , Coagulação Intravascular Disseminada/virologia , Elefantes/virologia , Hemorragia/veterinária , Hemorragia/virologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Herpesviridae/fisiologia , Animais , Coagulação Intravascular Disseminada/patologia , Edema/patologia , Hemorragia/patologia , Infecções por Herpesviridae/patologia , Corpos de Inclusão Viral/metabolismo , Inflamação/patologia , Linfonodos/patologia , Especificidade de Órgãos , Estudos Retrospectivos , Índice de Gravidade de Doença
10.
Int J Biol Macromol ; 185: 485-493, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34174313

RESUMO

Co-existence of Japanese Encephalitis virus (JEV) with highly homologous antigenic epitopes results in antibody-based serodiagnosis being inaccurate at detecting and distinguishing JEV from other flaviviruses. This often causes misdiagnosis and inefficient treatments of flavivirus infection. Generation of JEV NS1 protein remains a challenge as it is notably expressed in the form of inactive aggregates known as inclusion bodies using bacterial expression systems. This study evaluated two trxB and gor E. coli strains in producing soluble JEV NS1 via a cold-shock expression system. High yield of JEV NS1 inclusion bodies was produced using cold-shocked expression system. Subsequently, a simplified yet successful approach in generating soluble, active JEV NS1 protein through solubilization, purification and in vitro refolding of JEV NS1 protein from inclusion bodies was developed. A step-wise dialysis refolding approach was used to facilitate JEV NS1 refolding. The authenticity of the refolded JEV NS1 was confirmed by specific antibody binding on indirect ELISA commercial anti-NS1 antibodies which showed that the refolded JEV NS1 was highly immunoreactive. This presented approach is cost-effective, and negates the need for mammalian or insect cell expression systems in order to synthesize this JEV NS1 protein of important diagnostic and therapeutic relevance in Japanese Encephalitis disease.


Assuntos
Anticorpos Antivirais/metabolismo , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Escherichia coli/crescimento & desenvolvimento , Proteínas não Estruturais Virais/genética , Dissulfetos/química , Vírus da Encefalite Japonesa (Espécie)/imunologia , Epitopos/imunologia , Escherichia coli/classificação , Escherichia coli/genética , Corpos de Inclusão Viral/imunologia , Corpos de Inclusão Viral/metabolismo , Engenharia de Proteínas , Redobramento de Proteína , Solubilidade , Transformação Bacteriana , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
11.
PLoS Pathog ; 17(1): e1009231, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471863

RESUMO

Liquid-liquid phase separation (LLPS) can drive formation of diverse and essential macromolecular structures, including those specified by viruses. Kaposi's Sarcoma-Associated Herpesvirus (KSHV) genomes associate with the viral encoded Latency-Associated Nuclear Antigen (LANA) to form stable nuclear bodies (NBs) during latent infection. Here, we show that LANA-NB formation and KSHV genome conformation involves LLPS. Using LLPS disrupting solvents, we show that LANA-NBs are partially disrupted, while DAXX and PML foci are highly resistant. LLPS disruption altered the LANA-dependent KSHV chromosome conformation but did not stimulate lytic reactivation. We found that LANA-NBs undergo major morphological transformation during KSHV lytic reactivation to form LANA-associated replication compartments encompassing KSHV DNA. DAXX colocalizes with the LANA-NBs during latency but is evicted from the LANA-associated lytic replication compartments. These findings indicate the LANA-NBs are dynamic super-molecular nuclear structures that partly depend on LLPS and undergo morphological transitions corresponding to the different modes of viral replication.


Assuntos
Antígenos Virais/química , Proteínas Correpressoras/metabolismo , Genoma Viral/genética , Herpesvirus Humano 8/genética , Corpos de Inclusão Intranuclear/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/química , Sarcoma de Kaposi/virologia , Antígenos Virais/genética , Linhagem Celular Tumoral , Herpesvirus Humano 8/fisiologia , Histonas/metabolismo , Humanos , Corpos de Inclusão Viral/química , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Intranuclear/química , Infecção Latente , Extração Líquido-Líquido , Proteínas Nucleares/genética , Plasmídeos/genética , Latência Viral , Replicação Viral
12.
Viral Immunol ; 34(4): 218-226, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33226912

RESUMO

The nuclear factor-kappa B (NF-κB) signaling network constitutes a first line of defense against the invading viruses. However, viruses also adopted multiple strategies to interfere with NF-κB activation. Enterovirus 71 (EV71), in the family Picornaviridae, has become the main pathogen responsible for hand, foot, and mouth disease. Recent studies have reported that the nonstructural protein 2C of EV71 inhibits TNF-α induced NF-κB activation by suppressing IKKß phosphorylation. In our study, we found that 2C can form inclusion bodies (IBs) in infected and transfected cells. Furthermore, 2C was able to sequester IKKß into IBs through direct interaction with IKKß. Although 2C did not directly interact with IKKα, viral protein 2C was able to sequester the IKKα into the IBs mediated by IKKß. Our in vitro data further demonstrated that EV71 2C could suppress IKKα phosphorylation. These all together support a novel mechanism for EV71 to escape from NF-κB response, in which the phosphorylation of IKKα was suppressed by being recruited into viral IBs in the presence of 2C and IKKß.


Assuntos
Enterovirus , Quinase I-kappa B , NF-kappa B , Proteínas de Transporte/metabolismo , Enterovirus/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Corpos de Inclusão Viral/metabolismo , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo
13.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32878896

RESUMO

Viruses routinely employ strategies to prevent the activation of innate immune signaling in infected cells. Respiratory syncytial virus (RSV) is no exception, as it encodes two accessory proteins (NS1 and NS2) which are well established to block interferon signaling. However, RSV-encoded mechanisms for inhibiting NF-κB signaling are less well characterized. In this study, we identified RSV-mediated antagonism of this pathway, independent of the NS1 and NS2 proteins and indeed distinct from other known viral mechanisms of NF-κB inhibition. In both human and bovine RSV-infected cells, we demonstrated that the p65 subunit of NF-κB is rerouted to perinuclear puncta in the cytoplasm, which are synonymous with viral inclusion bodies (IBs), the site for viral RNA replication. Captured p65 was unable to translocate to the nucleus or transactivate a NF-κB reporter following tumor necrosis factor alpha (TNF-α) stimulation, confirming the immune-antagonistic nature of this sequestration. Subsequently, we used correlative light electron microscopy (CLEM) to colocalize the RSV N protein and p65 within bovine RSV (bRSV) IBs, which are granular, membraneless regions of cytoplasm with liquid organelle-like properties. Additional characterization of bRSV IBs indicated that although they are likely formed by liquid-liquid phase separation (LLPS), they have a differential sensitivity to hypotonic shock proportional to their size. Together, these data identify a novel mechanism for viral antagonism of innate immune signaling which relies on sequestration of the NF-κB subunit p65 to a biomolecular condensate-a mechanism conserved across the Orthopneumovirus genus and not host-cell specific. More generally, they provide additional evidence that RNA virus IBs are important immunomodulatory complexes within infected cells.IMPORTANCE Many viruses replicate almost entirely in the cytoplasm of infected cells; however, how these pathogens are able to compartmentalize their life cycle to provide favorable conditions for replication and to avoid the litany of antiviral detection mechanisms in the cytoplasm remains relatively uncharacterized. In this manuscript, we show that bovine respiratory syncytial virus (bRSV), which infects cattle, does this by generating inclusion bodies in the cytoplasm of infected cells. We confirm that both bRSV and human RSV viral RNA replication takes place in these inclusion bodies, likely meaning these organelles are a functionally conserved feature of this group of viruses (the orthopneumoviruses). Importantly, we also showed that these organelles are able to capture important innate immune transcription factors (in this case NF-KB), blocking the normal signaling processes that tell the nucleus the cell is infected, which may help us to understand how these viruses cause disease.


Assuntos
Imunidade Inata/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/metabolismo , Animais , Antivirais/farmacologia , Bovinos , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Corpos de Inclusão Viral/metabolismo , NF-kappa B/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/genética , Fator de Necrose Tumoral alfa , Células Vero , Replicação Viral
14.
J Virol ; 94(16)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32493824

RESUMO

Ebola virus (EBOV) inclusion bodies (IBs) are cytoplasmic sites of nucleocapsid formation and RNA replication, housing key steps in the virus life cycle that warrant further investigation. During infection, IBs display dynamic properties regarding their size and location. The contents of IBs also must transition prior to further viral maturation, assembly, and release, implying additional steps in IB function. Interestingly, the expression of the viral nucleoprotein (NP) alone is sufficient for the generation of IBs, indicating that it plays an important role in IB formation during infection. In addition to NP, other components of the nucleocapsid localize to IBs, including VP35, VP24, VP30, and the RNA polymerase L. We previously defined and solved the crystal structure of the C-terminal domain of NP (NP-Ct), but its role in virus replication remained unclear. Here, we show that NP-Ct is necessary for IB formation when NP is expressed alone. Interestingly, we find that NP-Ct is also required for the production of infectious virus-like particles (VLPs), and that defective VLPs with NP-Ct deletions are significantly reduced in viral RNA content. Furthermore, coexpression of the nucleocapsid component VP35 overcomes deletion of NP-Ct in triggering IB formation, demonstrating a functional interaction between the two proteins. Of all the EBOV proteins, only VP35 is able to overcome the defect in IB formation caused by the deletion of NP-Ct. This effect is mediated by a novel protein-protein interaction between VP35 and NP that controls both regulation of IB formation and RNA replication itself and that is mediated by a newly identified functional domain of NP, the central domain.IMPORTANCE Inclusion bodies (IBs) are cytoplasmic sites of RNA synthesis for a variety of negative-sense RNA viruses, including Ebola virus. In addition to housing important steps in the viral life cycle, IBs protect new viral RNA from innate immune attack and contain specific host proteins whose function is under study. A key viral factor in Ebola virus IB formation is the nucleoprotein, NP, which also is important in RNA encapsidation and synthesis. In this study, we have identified two domains of NP that control inclusion body formation. One of these, the central domain (CD), interacts with viral protein VP35 to control both inclusion body formation and RNA synthesis. The other is the NP C-terminal domain (NP-Ct), whose function has not previously been reported. These findings contribute to a model in which NP and its interactions with VP35 link the establishment of IBs to the synthesis of viral RNA.


Assuntos
Ebolavirus/metabolismo , Corpos de Inclusão Viral/metabolismo , Nucleoproteínas/fisiologia , Linhagem Celular , Ebolavirus/patogenicidade , Genoma Viral/genética , Células HEK293 , Doença pelo Vírus Ebola/virologia , Humanos , Corpos de Inclusão/metabolismo , Nucleocapsídeo/metabolismo , Nucleocapsídeo/fisiologia , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/fisiologia , Nucleoproteínas/metabolismo , RNA/biossíntese , RNA Viral/genética , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/fisiologia , Vírion/metabolismo , Replicação Viral/fisiologia
15.
Cells ; 9(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370067

RESUMO

Ebola virus (EBOV) is a zoonotic pathogen causing severe hemorrhagic fevers in humans and non-human primates with high case fatality rates. In recent years, the number and extent of outbreaks has increased, highlighting the importance of better understanding the molecular aspects of EBOV infection and host cell interactions to control this virus more efficiently. Many viruses, including EBOV, have been shown to recruit host proteins for different viral processes. Based on a genome-wide siRNA screen, we recently identified the cellular host factor carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) as being involved in EBOV RNA synthesis. However, mechanistic details of how this host factor plays a role in the EBOV life cycle remain elusive. In this study, we analyzed the functional and molecular interactions between EBOV and CAD. To this end, we used siRNA knockdowns in combination with various reverse genetics-based life cycle modelling systems and additionally performed co-immunoprecipitation and co-immunofluorescence assays to investigate the influence of CAD on individual aspects of the EBOV life cycle and to characterize the interactions of CAD with viral proteins. Following this approach, we could demonstrate that CAD directly interacts with the EBOV nucleoprotein NP, and that NP is sufficient to recruit CAD into inclusion bodies dependent on the glutaminase (GLN) domain of CAD. Further, siRNA knockdown experiments indicated that CAD is important for both viral genome replication and transcription, while substrate rescue experiments showed that the function of CAD in pyrimidine synthesis is indeed required for those processes. Together, this suggests that NP recruits CAD into inclusion bodies via its GLN domain in order to provide pyrimidines for EBOV genome replication and transcription. These results define a novel mechanism by which EBOV hijacks host cell pathways in order to facilitate genome replication and transcription and provide a further basis for the development of host-directed broad-spectrum antivirals.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Ebolavirus/fisiologia , Genoma Viral , Corpos de Inclusão Viral/metabolismo , Nucleoproteínas/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Replicação Viral , Animais , Aspartato Carbamoiltransferase/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Linhagem Celular , Di-Hidro-Orotase/química , Ebolavirus/genética , Técnicas de Silenciamento de Genes , Humanos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Pirimidinas/farmacologia , RNA/metabolismo
16.
J Gen Virol ; 101(4): 366-384, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32125263

RESUMO

African horse sickness virus (AHSV) is the causative agent of the often fatal disease African horse sickness in equids. The non-structural protein NS4 is the only AHSV protein that localizes to the nucleus. Here we report that all AHSV reference and representative field strains express one of the two forms of NS4, i.e. NS4-I or NS4-II. Both forms of NS4 are nucleocytoplasmic proteins, but NS4-I has a stronger nuclear presence whilst NS4-II has a proportionally higher cytoplasmic distribution. A subtype of NS4-II containing a nuclear localization signal (NLS), named NLS-NS4-II, displays distinct punctate foci in the nucleus. We showed that NS4 likely enters the nucleus via passive diffusion as a result of its small size. Colocalization analysis with nuclear compartments revealed that NS4 colocalizes with promyelocytic leukaemia nuclear bodies (PML-NBs), suggesting a role in the antiviral response or interferon signalling. Interestingly, we showed that two other AHSV proteins also interact with nuclear components. A small fraction of the NS1 tubules were present in the nucleus and associated with PML-NBs; this was more pronounced for a virus strain lacking NS4. A component of nuclear speckles, serine and arginine rich splicing factor 2 (SRSF2) was recruited to viral inclusion bodies (VIBs) in the cytoplasm of AHSV-infected cells and colocalized with NS2. Nuclear speckles are important sites for cellular mRNA transcript processing and maturation. Collectively, these results provide data on three AHSV non-structural proteins interacting with host cell nuclear components that could contribute to overcoming antiviral responses and creating conditions that will favour viral replication.


Assuntos
Vírus da Doença Equina Africana/metabolismo , Núcleo Celular/virologia , Citoplasma/virologia , Genoma Viral , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas Virais/metabolismo , Vírus da Doença Equina Africana/genética , Vírus da Doença Equina Africana/patogenicidade , Animais , Corpos Enovelados/metabolismo , Cricetinae , Interações entre Hospedeiro e Microrganismos , Corpos de Inclusão Viral/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Sorogrupo , Células Sf9 , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral
17.
mBio ; 11(1)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098814

RESUMO

Ebola virus (EBOV) causes a severe and often fatal disease for which no approved vaccines or antivirals are currently available. EBOV VP30 has been described as a viral phosphoprotein, and nonphosphorylated VP30 is essential and sufficient to support secondary transcription in an EBOV-specific minigenome system; however, phosphorylatable serine residues near the N terminus of VP30 are required to support primary viral transcription as well as the reinitiation of VP30-mediated transcription at internal EBOV genes. While the dephosphorylation of VP30 by the cellular phosphatase PP2A was found to be mediated by nucleoprotein, the VP30-specific kinases and the role of phosphorylation remain unknown. Here, we report that serine-arginine protein kinase 1 (SRPK1) and SRPK2 phosphorylate serine 29 of VP30, which is located in an N-terminal R26xxS29 motif. Interaction with VP30 via the R26xxS29 motif recruits SRPK1 into EBOV-induced inclusion bodies, the sites of viral RNA synthesis, and an inhibitor of SRPK1/SRPK2 downregulates primary viral transcription. When the SRPK1 recognition motif of VP30 was mutated in a recombinant EBOV, virus replication was severely impaired. It is presumed that the interplay between SRPK1 and PP2A in the EBOV inclusions provides a comprehensive regulatory circuit to ensure the activity of VP30 in EBOV transcription. Thus, the identification of SRPK1 is an important mosaic stone that completes our picture of the players involved in Ebola virus transcription regulation.IMPORTANCE The largest Ebola virus (EBOV) epidemic in West Africa ever caused more than 28,000 cases and 11,000 deaths, and the current EBOV epidemic in the Democratic Republic of the Congo continues, with more than 3,000 cases to date. Therefore, it is essential to develop antivirals against EBOV. Recently, an inhibitor of the cellular phosphatase PP2A-mediated dephosphorylation of the EBOV transcription factor VP30 has been shown to suppress the spread of Ebola virus. Here, we identified the protein kinase SRPK1 as a VP30-specific kinase that phosphorylates serine 29, the same residue that is dephosphorylated by PP2A. SRPK1-mediated phosphorylation of serine 29 enabled primary viral transcription. Mutation of the SRPK1 recognition motif in VP30 resulted in significant growth inhibition of EBOV. Similarly, elevation of the phosphorylation status of serine 29 by overexpression of SRPK1 inhibited EBOV growth, highlighting the importance of reversible phosphorylation of VP30 as a potential therapeutic target.


Assuntos
Ebolavirus/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , África Ocidental , Animais , Linhagem Celular , Sobrevivência Celular , Chlorocebus aethiops , Ebolavirus/genética , Células HEK293 , Doença pelo Vírus Ebola/virologia , Humanos , Corpos de Inclusão Viral/metabolismo , Nucleoproteínas , Fosforilação , RNA Viral/genética , Fatores de Transcrição/metabolismo , Células Vero , Replicação Viral/genética
18.
Cell Death Differ ; 27(8): 2363-2382, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32034313

RESUMO

Host nucleases are implicated in antiviral response through the processing of pathogen-derived nucleic acids. Among many host RNases, decapping enzymes DCP1 and 2, and 5'→3' exonuclease XRN1, which are components of the RNA decay machinery, have been extensively studied in prokaryotes, plants, and invertebrates but less so in mammalian systems. As a result, the implication of XRN1 and DCPs in viral replication, in particular, the spatio-temporal dynamics during RNA viral infections remains elusive. Here, we highlight that XRN1 and DCPs play a critical role in limiting several groups of RNA viral infections. This antiviral activity was not obvious in wild-type cells but clearly observed in type I interferon (IFN-I)-deficient cells. Mechanistically, infection with RNA viruses induced the enrichment of XRN1 and DCPs in viral replication complexes (vRCs), hence forming distinct cytoplasmic aggregates. These aggregates served as sites for direct interaction between XRN1, DCP1/2, and viral ribonucleoprotein that contains viral RNA (vRNA). Although these XRN1-DCP1/2-vRC-containing foci resemble antiviral stress granules (SGs) or P-body (PB), they did not colocalize with known SG markers and did not correlate with critical PB functions. Furthermore, the presence of 5' mono- and 5' triphosphate structures on vRNA was not required for the formation of XRN1-DCP1/2-vRC-containing foci. On the other hand, single-, double-stranded, and higher-ordered vRNA species play a role but are not deterministic for efficient formation of XRN1-DCP1/2 foci and consequent antiviral activity in a manner proportional to RNA length. These results highlight the mechanism behind the antiviral function of XRN1-DCP1/2 in RNA viral infections independent of IFN-I response, protein kinase R and PB function.


Assuntos
Antivirais/farmacologia , Citoplasma/virologia , Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Agregados Proteicos , Vírus de RNA/metabolismo , Transativadores/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Galinhas , Vírus de DNA/efeitos dos fármacos , Endorribonucleases/química , Células HeLa , Humanos , Corpos de Inclusão Viral/metabolismo , Interferon Tipo I/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo , Fosfatos/metabolismo , Domínios Proteicos , Multimerização Proteica , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transativadores/química , Replicação Viral/efeitos dos fármacos
19.
Adv Exp Med Biol ; 1215: 111-127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31317498

RESUMO

Replication and assembly of many viruses occur in viral factories which are specialized intracellular compartments formed during viral infection. For rabies virus, those viral factories are called Negri bodies (NBs). NBs are cytoplasmic inclusion bodies in which viral RNAs (mRNAs as well as genomic and antigenomic RNAs) are synthesized. NBs are spherical, they can fuse together, and can reversibly deform when encountering a physical barrier. All these characteristics are similar to those of eukaryotic membrane-less liquid organelles which contribute to the compartmentalization of the cell interior. Indeed, the liquid nature of NBs has been confirmed by FRAP experiments. The co-expression of rabies virus nucleoprotein N and phosphoprotein P is sufficient to induce the formation of cytoplasmic inclusions recapitulating NBs properties. Remarkably, P and N have features similar to those of cellular proteins involved in liquid organelles formation: N is an RNA-binding protein and P contains intrinsically disordered domains. An overview of the literature indicates that formation of liquid viral factories by phase separation is probably common among Mononegavirales. This allows specific recruitment and concentration of viral proteins. Finally, as virus-associated molecular patterns recognized by cellular sensors of RNA virus replication are probably essentially present in the viral factory, there should be a subtle interplay (which remains to be characterized) between those liquid structures and the cellular proteins which trigger the innate immune response.


Assuntos
Corpos de Inclusão Viral , Vírus da Raiva , Corpos de Inclusão Viral/química , Corpos de Inclusão Viral/metabolismo , RNA Viral/biossíntese , Vírus da Raiva/fisiologia , Proteínas Virais/metabolismo , Replicação Viral
20.
PLoS Pathog ; 15(4): e1007733, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31034506

RESUMO

Formation of cytoplasmic inclusion bodies (IBs) is a hallmark of infections with non-segmented negative-strand RNA viruses (order Mononegavirales). We show here that Nipah virus (NiV), a bat-derived highly pathogenic member of the Paramyxoviridae family, differs from mononegaviruses of the Rhabdo-, Filo- and Pneumoviridae families by forming two types of IBs with distinct localizations, formation kinetics, and protein compositions. IBs in the perinuclear region form rapidly upon expression of the nucleocapsid proteins. These IBperi are highly mobile and associate with the aggresome marker y-tubulin. IBperi can recruit unrelated overexpressed cytosolic proteins but do not contain the viral matrix (M) protein. Additionally, NiV forms an as yet undescribed IB population at the plasma membrane (IBPM) that is y-tubulin-negative but contains the M protein. Infection studies with recombinant NiV revealed that IBPM require the M protein for their formation, and most likely represent sites of NiV assembly and budding. The identification of this novel type of plasma membrane-associated IBs not only provides new insights into NiV biology and may open new avenues to develop novel antiviral approaches to treat these highly pathogenic viruses, it also provides a basis for a more detailed characterization of IBs and their role in virus assembly and replication in infections with other Mononegavirales.


Assuntos
Membrana Celular/virologia , Infecções por Henipavirus/virologia , Corpos de Inclusão Viral/virologia , Vírus Nipah/patogenicidade , Proteínas da Matriz Viral/metabolismo , Animais , Chlorocebus aethiops , Glicoproteínas/metabolismo , Infecções por Henipavirus/metabolismo , Infecções por Henipavirus/patologia , Humanos , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Viral/patologia , Células Vero , Montagem de Vírus , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...